卷五

  ○商功(以御功程积实) 今有穿地,积一万尺。问为坚、壤各几何?答曰:为坚七千五百尺;为壤一 万二千五百尺。

  术曰:穿地四为壤五, 〔壤谓息土。〕 为坚三, 〔坚谓筑土。〕 为墟四。

  〔墟谓穿坑。此皆其常率。〕 以穿地求壤,五之;求坚,三之;皆四而一。

  〔今有术也。〕 以壤求穿,四之;求坚,三之;皆五而一。以坚求穿,四之;求壤,五之; 皆三而一。

  〔淳风等按:此术并今有之义也。重张穿地积一万尺,为所有数,坚率三、 壤率五各为所求率,穿率四为所有率,而今有之,即得。〕 城、垣、堤、沟、堑、渠皆同术。

  术曰:并上下广而半之, 〔损广补狭。〕 以高若深乘之,又以袤乘之,即积尺。

  〔按:此术“并上下广而半之”者,以盈补虚,得中平之广。“以高若深乘 之”,得一头之立幂。“又以袤乘之”者,得立实之积,故为积尺。〕 今有穿地,袤一丈六尺,深一丈,上广六尺,为垣积五百七十六尺。问穿地 下广几何?答曰:三尺五分尺之三。

  术曰:置垣积尺,四之为实。

  〔穿地四,为坚三。垣,坚也。以坚求穿地,当四之,三而一也。〕 以深、袤相乘, 〔为深、袤之立实也。〕 又三之,为法。

  〔以深、袤乘之立实除垣积,即坑广。又三之者,与坚率并除之。〕 所得,倍之。

  〔为坑有两广,先并而半之,即为广狭之中平。今先得其中平,故又倍之知, 两广全也。〕 减上广,余即下广。

  〔按:此术穿地四,为坚三。垣即坚也。今以坚求穿地,当四乘之,三而一。

  深、袤相乘者,为深袤立幂。以深袤立幂除积,即坑广。又三之,为法,与坚率 并除。所得,倍之者,为坑有两广,先并而半之,为中平之广。今此得中平之广, 故倍之还为两广并。故减上广,余即下广也。〕 今有城下广四丈,上广二丈,高五丈,袤一百二十六丈五尺。问积几何?答 曰:一百八十九万七千五百尺: 今有垣下广三尺,上广二尺,高一丈二尺,袤二十二丈五尺八寸。问积几何? 答曰:六千七百七十四尺。

  今有堤下广二丈,上广八尺,高四尺,袤一十二丈七尺。问积几何?答曰: 七千一百一十二尺。

  冬程人功四百四十四尺,问用徒几何?答曰:一十六人二百一十一分人之二。

  术曰:以积尺为实,程功尺数为法,实如法而一,即用徒人数。

  今有沟,上广一丈五尺,下广一丈,深五尺,袤七丈。问积几何?答曰:四 千三百七十五尺。

  春程人功七百六十六尺,并出土功五分之一,定功六百一十二尺五分尺之四。

  问用徒几何?答曰:七人三千六十四分人之四百二十七。

  术曰:置本人功,去其五分之一,余为法。

  〔“去其五分之一”者,谓以四乘,五除也。〕 以沟积尺为实,实如法而一,得用徒人数。

  〔按:此术“置本人功,去其五分之一”者,谓以四乘之,五而一,除去出 土之功,取其定功。乃通分内子以为法。以分母乘沟积尺为实者,法里有分,实 里通之,故实如法而一,即用徒人数。此以一人之积尺除其众尺,故用徒人数。

  不尽者,等数约之而命分也。〕 今有堑,上广一丈六尺三寸,下广一丈,深六尺三寸,袤一十三丈二尺一寸。

  问积几何?答曰:一万九百四十三尺八寸。

  〔八寸者,谓穿地方尺,深八寸。此积余有方尺中二分四厘五毫,弃之。文 欲从易,非其常定也。〕 夏程人功八百七十一尺,并出土功五分之一,沙砾水石之功作太半,定功二 百三十二尺一十五分尺之四。问用徒几何?答曰:四十七人三千四百八十四分人 之四百九。

  术曰:置本人功,去其出土功五分之一,又去沙砾水石之功太半,余为法。

  以堑积尺为实。实如法而一,即用徒人数。

  〔按:此术“置本人功,去其出土功五分之一”者,谓以四乘,五除。“又 去沙砾水石作太半”者,一乘,三除,存其少半,取其定功。乃通分内子以为法。

  以分母乘堑积尺为实者,为法里有分,实里通之,故实如法而一,即用徒人数。

  不尽者,等数约之而命分也。〕 今有穿渠,上广一丈八尺,下广三尺六寸,深一丈八尺,袤五万一千八百二 十四尺。问积几何?答曰:一千七万四千五百八十五尺六寸。

  秋程人功三百尺,问用徒几何?答曰:三万三千五百八十二人,功内少一十 四尺四寸。

  一千人先到,问当受袤几何?答曰:一百五十四丈三尺二寸八十一分寸之八。

  术曰:以一人功尺数乘先到人数为实。

  〔以一千人一日功为实。立实为功。〕 并渠上下广而半之,以深乘之,为法。

  〔以渠广深之立实为法。〕 实如法得袤尺。

  今有方堡壔, 〔堡者,堡城也;壔,音丁老反,又音纛,谓以土拥木也。〕 方一丈六尺,高一丈五尺。问积几何?答曰:三千八百四十尺。

  术曰:方自乘,以高乘之,即积尺。

  今有圆堡瑽,周四丈八尺,高一丈一尺。问积几何?答曰:二千一百一十二 尺。

  〔于徽术,当积二千一十七尺一百五十七分尺之一百三十一。

  淳风等按:依密率,积二千一十六尺。〕 术曰:周自相乘,以高乘之,十二而一。

  〔此章诸术亦以周三径一为率,皆非也。于徽术当以周自乘,以高乘之,又 以二十五乘之,三百一十四而一。此之圆幂亦如圆田之幂也。求幂亦如圆田,而 以高乘幂也。

  淳风等按:依密率,以七乘之,八十八而一。〕 今有方亭,下方五丈,上方四丈,高五丈。问积几何?答曰:一十万一千六 百六十六尺太半尺。

  术曰:上下方相乘,又各自乘,并之,以高乘之,三而一。

  〔此章有堑堵、陽马,皆合而成立方。盖说算者乃立棋三品,以效高深之积。

  假令方亭,上方一尺,下方三尺,高一尺。其用棋也,中央立方一,四面堑堵四, 四角陽马四。上下方相乘为三尺,以高乘之,得积三尺,是为得中央立方一,四 面堑堵各一。下方自乘为九,以高乘之,得积九尺。是为中央立方一、四面堑堵 各二、四角陽马各三也。上方自乘,以高乘之,得积一尺,又为中央立方一。凡 三品棋皆一而为三,故三而一,得积尺。用棋之数:立方三、堑堵陽马各十二, 凡二十七,棋十三。更差次之,而成方亭者三,验矣。为术又可令方差自乘,以 高乘之,三而一,即四陽马也;上下方相乘,以高乘之,即中央立方及四面堑堵 也。并之,以为方亭积数也。〕 今有圆亭,下周三丈,上周二丈,高一丈。问积几何?答曰:五百二十七尺 九分尺之七。

  〔于徽术,当积五百四尺四百七十一分尺之一百一十六也。

  淳风等按:依密率,为积五百三尺三十三分尺之二十六。〕 术曰:上下周相乘,又各自乘,并之,以高乘之,三十六而一。

  〔此术周三径一之义。合以三除上下周,各为上下径。以相乘,又各自乘, 并,以高乘之,三而一,为方亭之积。假令三约上下周俱不尽,还通之,即各为 上下径。令上下径相乘,又各自乘,并,以高乘之,为三方亭之积分。此合分母 三相乘得九,为法,除之。又三而一,得方亭之积。从方亭求圆亭之积,亦犹方 幂中求圆幂。乃令圆率三乘之,方率四而一,得圆亭之积。前求方亭之积,乃以 三而一;今求圆亭之积,亦合三乘之。二母既同,故相准折,惟以方幂四乘分母 九,得三十六,而连除之。于徽术,当上下周相乘,又各自乘,并,以高乘之, 又二十五乘之,九百四十二而一。此方亭四角圆杀,比于方亭,二百分之一百五 十七。为术之意,先作方亭,三而一。则此据上下径为之者,当又以一百五十七 乘之,六百而一也。今据周为之,若于圆堡昪,又以二十五乘之,三百一十四而 一,则先得三圆亭矣。故以三百一十四为九百四十二而一,并除之。

  淳风等按:依密率,以七乘之,二百六十四而一。〕 今有方锥,下方二丈七尺,高二丈九尺。问积几何?答曰:七千四十七尺。

  术曰:下方自乘,以高乘之,三而一。

  〔按:此术假令方锥下方二尺,高一尺,即四陽马。如术为之,用十二陽马 成三方锥。故三而一,得方锥也。〕 今有圆锥,下周三丈五尺,高五丈一尺。问积几何?答曰:一千七百三十五 尺一十二分尺之五。

  〔于徽术,当积一千六百五十八尺三百一十四分尺之十三。

  淳风等按:依密率,为积一千六百五十六尺八十八分尺之四十七。〕 术曰:下周自乘,以高乘之,三十六而一。

  〔按:此术圆锥下周以为方锥下方。方锥下方令自乘,以高乘之,令三而一, 得大方锥之积。大锥方之积合十二圆矣。今求一圆,复合十二除之,故令三乘十 二,得三十六,而连除。于徽术,当下周自乘,以高乘之,又以二十五乘之,九 百四十二而一。圆锥比于方锥亦二百分之一百五十七。令径自乘者,亦当以一百 五十七乘之,六百而一。其说如圆亭也。

  淳风等按:依密率,以七乘之,二百六十四而一。〕 今有堑堵,下广二丈,袤一十八丈六尺,高二丈五尺。问积几何?答曰:四 万六千五百尺。

  术曰:广袤相乘,以高乘之,二而一。

  〔邪解立方,得两堑堵。虽复橢方,亦为堑堵。故二而一。此则合所规棋。

  推其物体,盖为堑上叠也。其形如城,而无上广,与所规棋形异而同实。未闻所 以名之为堑堵之说也。〕 今有陽马,广五尺,袤七尺,高八尺。问积几何?答曰:九十三尺少半尺。

  术曰:广袤相乘,以高乘之,三而一。

  〔按:此术陽马之形,方锥一隅也。今谓四柱屋隅为陽马。假令广袤各一尺, 高一尺,相乘,得立方积一尺。邪解立方,得两堑堵;邪解堑堵,其一为陽马, 一为鳖臑。陽马居二,鳖臑居一,不易之率也。合两鳖臑成一陽马,合三陽马而 成一立方,故三而一。验之以棋,其形露矣。悉割陽马,凡为六鳖臑。观其割分, 则体势互通,盖易了也。其棋或修短、或广狭、立方不等者,亦割分以为六鳖臑。

  其形不悉相似。然见数同,积实均也。鳖臑殊形,陽马异体。然陽马异体,则不 纯合。不纯合,则难为之矣。何则?按:邪解方棋以为堑堵者,必当以半为分; 邪解堑堵以为陽马者,亦必当以半为分,一从一横耳。设以陽马为分内,鳖臑为 分外。棋虽或随修短广狭,犹有此分常率知,殊形异体,亦同也者,以此而已。

  其使鳖臑广、袤、高各二尺,用堑堵、鳖臑之棋各二,皆用赤棋。又使陽马之广、 袤、高各二尺,用立方之棋一,堑堵、陽马之棋各二,皆用黑棋。棋之赤、黑, 接为堑堵,广、袤、高各二尺。于是中攽其广、袤,又中分其高。令赤、黑堑堵 各自适当一方,高一尺,方一尺,每二分鳖臑,则一陽马也。其余两端各积本体, 合成一方焉。是为别种而方者率居三,通其体而方者率居一。虽方随棋改,而固 有常然之势也。按:余数具而可知者有一、二分之别,则一、二之为率定矣。其 于理也岂虚矣。若为数而穷之,置余广、袤、高之数,各半之,则四分之三又可 知也。半之弥少,其余弥细,至细曰微,微则无形。由是言之,安取余哉?数而 求穷之者,谓以情推,不用筹算。鳖臑之物,不同器用;陽马之形,或随修短广 狭。然不有鳖臑,无以审陽马之数,不有陽马,无以知锥亭之数,功实之主也。〕 今有鳖臑,下广五尺,无袤;上袤四尺,无广;高七尺。问积几何?答曰: 二十三尺少半尺。

  术曰:广袤相乘,以高乘之,六而一。

  〔按:此术臑者,臂节也。或曰:半陽马,其形有似鳖肘,故以名云。中破 陽马,得两鳖臑。鳖臑之见数即陽马之半数。数同而实据半,故云六而一,即得。〕 今有羡除,下广六尺,上广一丈,深三尺;末广八尺,无深;袤七尺。问积 几何?答曰:八十四尺。

  术曰:并三广,以深乘之,又以袤乘之,六而一。

  〔按:此术羡除,实隧道也。其所穿地,上平下邪,似两鳖臑夹一堑堵,即 羡除之形。假令用此棋:上广三尺,深一尺,下广一尺;末广一尺,无深;袤一 尺。下广、末广皆堑堵之广。上广者,两鳖臑与一堑堵相连之广也。以深、袤乘, 得积五尺。鳖臑居二,堑堵居三,其于本棋皆一为六,故六而一。合四陽马以为 方锥。邪画方锥之底,亦令为中方。就中方削而上合,全为中方锥之半。于是陽 马之棋悉中解矣。中锥离而为四鳖臑焉。故外锥之半亦为四鳖臑。虽背正异形, 与常所谓鳖臑参不相似,实则同也。所云夹堑堵者,中锥之鳖臑也。凡堑堵上袤 短者,连陽马也。下袤短者,与鳖臑连也。上、下两袤相等知,亦与鳖臑连也。

  并三广,以高、袤乘,六而一,皆其积也。今此羡除之广即堑堵之袤也。按: 此本是三广不等,即与鳖臑连者。别而言之:中央堑堵广六尺,高三尺,袤七尺。

  末广之两旁,各一小鳖臑,皆与堑堵等。令小鳖臑居里,大鳖臑居表,则大鳖臑 皆出橢方锥:下广二尺,袤六尺,高七尺。分取其半,则为袤三尺。以高、广乘 之,三而一,即半锥之积也。邪解半锥得此两大鳖臑。求其积,亦当六而一,合 于常率矣。按:陽马之棋两邪,棋底方。当其方也,不问旁角而割之,相半可知 也。推此上连无成不方,故方锥与陽马同实。角而割之者,相半之势。此大小鳖 臑可知更相表里,但体有背正也。〕 今有刍甍,下广三丈,袤四丈;上袤二丈,无广;高一丈。问积几何?答曰: 五千尺。

  术曰:倍下袤,上袤从之,以广乘之,又以高乘之,六而一。

  〔推明义理者:旧说云:“凡积刍有上下广曰童,甍,谓其屋盖之苫也。” 是故甍之下广、袤与童之上广、袤等。正解方亭两边,合之即刍甍之形也。假令 下广二尺,袤三尺;上袤一尺,无广;高一尺。其用棋也,中央堑堵二,两端陽 马各二。倍下袤,上袤从之,为七尺。以下广乘之,得幂十四尺。陽马之幂各居 二,堑堵之幂各居三。以高乘之,得积十四尺。其于本棋也,皆一而为六。故六 而一,即得。亦可令上下袤差乘广,以高乘之,三而一,即四陽马也;下广乘上 袤而半之,高乘之,即二堑堵;并之,以为甍积也。〕 刍童、曲池、盘池、冥谷皆同术。

  术曰:倍上袤,下袤从之;亦倍下袤,上袤从之;各以其广乘之,并,以高 若深乘之,皆六而一。

  〔按:此术假令刍童上广一尺,袤二尺;下广三尺,袤四尺;高一尺。其用 棋也,中央立方二,四面堑堵六,四角陽马四。倍下袤为八,上袤从之,为十, 以高、广乘之,得积三十尺。是为得中央立方各三,两端堑堵各四,两旁堑堵各 六,四角陽马亦各六。复倍上袤,下袤从之,为八,以高、广乘之,得积八尺。

  是为得中央立方亦各三,两端堑堵各二。并两旁,三品棋皆一而为六。故六而一, 即得。为术又可令上下广袤差相乘,以高乘之,三而一,亦四陽马;上下广袤 互相乘,并,而半之,以高乘之,即四面六堑堵与二立方;并之,为刍童积。又 可令上下广袤互相乘而半之,上下广袤又各自乘,并,以高乘之,三而一,即得 也。〕 其曲池者,并上中、外周而半之,以为上袤;亦并下中、外周而半之,以为 下袤。

  〔此池环而不通匝,形如盘蛇,而曲之。亦云周者,谓如委谷依垣之周耳。

  引而伸之,周为袤。求袤之意,环田也。〕 今有刍童,下广二丈,袤三丈;上广三丈,袤四丈;高三丈。问积几何?答 曰:二万六千五百尺。

  今有曲池,上中周二丈,外周四丈,广一丈;下中周一丈四尺,外周二丈四 尺,广五尺;深一丈。问积几何?答曰:一千八百八十三尺三寸少半寸。

  今有盘池,上广六丈,袤八丈;下广四丈,袤六丈,深二丈。问积几何?答 曰:七万六百六十六尺太半尺。

  负土往来七十步,其二十步上下棚除,棚除二当平道五;踟蹰之间十加一; 载输之间三十步,定一返一百四十步。土笼积一尺六寸。秋程人功行五十九里半。

  问人到积尺及用徒各几何?答曰:人到二百四尺。用徒三百四十六人一百五十三 分人之六十二。

  术曰:以一笼积尺乘程行步数,为实。往来上下棚除二当平道五。

  〔棚,阁;除,斜道;有上下之难,故使二当五也。〕 置定往来步数,十加一,及载输之间三十步,以为法。除之,所得即一人所 到尺。以所到约积尺,即用徒人数。

  〔按:此术棚,阁;除,斜道;有上下之难,故使二当五。置定往来步数, 十加一,及载输之间三十步,是为往来一返凡用一百四十步。于今有术为所有率, 笼积一尺六寸为所求率,程行五十九里半为所有数,而今有之,即所到尺数。以 所到约积尺,即用徒人数者,此一人之积除其众积尺,故得用徒人数。为术又 可令往来一返所用之步约程行为返数,乘笼积为一人所到。以此术与今有术相 反覆,则乘除之或先后,意各有所在而同归耳。〕 今有冥谷,上广二丈,袤七丈;下广八尺,袤四丈;深六丈五尺。问积几何? 答曰:五万二千尺。

  载土往来二百步,载输之间一里。程行五十八里;六人共车,车载三十四尺 七寸。问人到积尺及用徒各几何?答曰:人到二百一尺五十分尺之十三。用徒二 百五十八人一万六十三分人之三千七百四十六。

  术曰:以一车积尺乘程行步数,为实。置今往来步数,加载输之间一里,以 车六人乘之,为法。除之,所得即一人所到尺。以所到约积尺,即用徒人数。

  〔按:此术今有之义。以载输及往来并得五百步,为所有率,车载三十四尺 七寸为所求率,程行五十八里,通之为步,为所有数,而今有之,所得即一车所 到。欲得人到者,当以六人除之,即得。术有分,故亦更令乘法而并除者,亦用 以车尺数以为一人到土率,六人乘五百步为行率也。又亦可五百步为行率,令六 人约车积尺数为一人到土率,以负土术入之。入之者,亦可求返数也。要取其会 通而已。术恐有分,故令乘法而并除。以所到约积尺,即用徒人数者,以一人所 到积尺除其众积,故得用徒人数也。〕 今有委粟平地,下周一十二丈,高二丈。问积及为粟几何?答曰:积八千尺。

  〔于徽术,当积七千六百四十三尺一百五十七分尺之四十九。

  淳风等按:依密率,为积七千六百三十六尺十一分尺之四。〕 为粟二千九百六十二斛二十七分斛之二十六。

  〔于徽术,当粟二千八百三十斛一千四百一十三分斛之一千二百一十。

  淳风等按:依密率,为粟二千八百二十八斛九十九分斛之二十八。〕 今有委菽依垣,下周三丈,高七尺。问积及为菽各几何?答曰:积三百五十 尺。

  〔依徽术,当积三百三十四尺四百七十一分尺之一百八十六。

  淳风等按:依密率,为积三百三十四尺十一分尺之一。〕 为菽一百四十四斛二百四十三分斛之八。

  〔依徽术,当菽一百三十七斛一万二千七百一十七分斛之七千七百七十一。

  淳风等按:依密率,为菽一百三十七斛八百九十一分斛之四百三十三。〕 今有委米依垣内角,下周八尺,高五尺。问积及为米各几何?答曰:积三十 五尺九分尺之五。

  〔于徽术,当积三十三尺四百七十一分尺之四百五十七。

  淳风等按:依密率,当积三十三尺三十三分尺之三十一。〕 为米二十一斛七百二十九分斛之六百九十一。

  〔于徽术,当米二十斛三万八千一百五十一分斛之三万六千九百八十。

  淳风等按:依密率,为米二十斛二千六百七十三分斛之二千五百四十。〕 委粟术曰:下周自乘,以高乘之,三十六而一。

  〔此犹圆锥也。于徽术,亦当下周自乘,以高乘之,又以二十五乘之,九百 四十二而一也。〕 其依垣者, 〔居圆锥之半也。〕 十八而一。

  〔于徽术,当令此下周自乘,以高乘之,又以二十五乘之,四百七十一而一。

  依垣之周,半于全周。其自乘之幂居全周自乘之幂四分之一,故半全周之法以为 法也。〕 其依垣内角者, 〔角,隅也,居圆锥四分之一也。〕 九而一。

  〔于徽术,当令此下周自乘,而倍之,以高乘之,又以二十五乘之,四百七 十一而一。依隅之周,半于依垣。其自乘之幂居依垣自乘之幂四分之一,当半依 垣之法以为法。法不可半,故倍其实。又此术亦用周三径一之率。假令以三除周, 得径;若不尽,通分内子,即为径之积分。令自乘,以高乘之,为三方锥之积分。

  母自相乘得九,为法,又当三而一,得方锥之积。从方锥中求圆锥之积,亦犹方 幂求圆幂。乃当三乘之,四而一,得圆锥之积。前求方锥积,乃以三而一;今求 圆锥之积,复合三乘之。二母既同,故相准折。惟以四乘分母九,得三十六而连 除,圆锥之积。其圆锥之积与平地聚粟同,故三十六而一。

  淳风等按:依密率,以七乘之,其平地者,二百六十四而一;依垣者,一百 三十二而一;依隅者,六十六而一也。〕 程粟一斛积二尺七寸; 〔二尺七寸者,谓方一尺,深二尺七寸,凡积二千七百寸。〕 其米一斛积一尺六寸五分寸之一; 〔谓积一千六百二十寸。〕 其菽、荅、麻、麦一斛皆二尺四寸十分寸之三。

  〔谓积二千四百三十寸。此为以精粗为率,而不等其概也。粟率五,米率三, 故米一斛于粟一斛,五分之三;菽、荅、麻、麦亦如本率云。故谓此三量器为概, 而皆不合于今斛。当今大司农斛,圆径一尺三寸五分五厘,正深一尺,于徽术, 为积一千四百四十一寸,排成余分,又有十分寸之三。王莽铜斛于今尺为深九寸 五分五厘,径一尺三寸六分八厘七毫。以徽术计之,于今斛为容九斗七升四合有 奇。《周官·考工记》:朅氏为量,深一尺,内方一尺而圆外,其实一釜。于徽 术,此圆积一千五百七十寸。《左氏传》曰:“齐旧四量:豆、区、釜、钟。四 升曰豆,各自其四,以登于釜。釜十则钟。”钟六斛四斗。釜六斗四升,方一尺, 深一尺,其积一千寸。若此方积容六斗四升,则通外圆积成旁,容十斗四合一龠 五分龠之三也。以数相乘之,则斛之制:方一尺而圆其外,庣旁一厘七毫,幂一 百五十六寸四分寸之一,深一尺,积一千五百六十二寸半,容十斗。王莽铜斛与 《汉书·律历志》所论斛同。〕 今有仓,广三丈,袤四丈五尺,容粟一万斛。问高几何?答曰:二丈。

  术曰:置粟一万斛积尺为实。广、袤相乘为法。实如法而一,得高尺。

  〔以广袤之幂除积,故得高。按:此术本以广袤相乘,以高乘之,得此积。

  今还元,置此广袤相乘为法,除之,故得高也。〕 今有圆囷, 〔圆囷,廪也,亦云圆囤也。〕 高一丈三尺三寸少半寸,容米二千斛。问周几何?答曰:五丈四尺。

  〔于徽术,当周五丈五尺二寸二十分寸之九。

  淳风等按:依密率,为周五丈五尺一百分尺之二十七。〕 术曰:置米积尺, 〔此积犹圆堡昪之积。〕 以十二乘之,令高而一。所得,开方除之,即周。

  〔于徽术,当置米积尺,以三百一十四乘之,为实。二十五乘囷高为法。所 得,开方除之,即周也。此亦据见幂以求周,失之于微少也。晋武库中有汉时王 莽所作铜斛,其篆书字题斛旁云:律嘉量斛,方一尺而圆其外,庣旁九厘五毫, 幂一百六十二寸;深一尺,积一千六百二十寸,容十斗。及斛底云:律嘉量斗, 方尺而圆其外,庣旁九厘五毫,幂一尺六寸二分。深一寸,积一百六十二寸,容 一斗。合、龠皆有文字。升居斛旁,合、龠在斛耳上。后有赞文,与今律历志同, 亦魏晋所常用。今粗疏王莽铜斛文字、尺、寸、分数,然不尽得升、合、勺之文 字。按:此术本周自相乘,以高乘之,十二而一,得此积。今还元,置此积,以 十二乘之,令高而一,即复本周自乘之数。凡物自乘,开方除之,复其本数。故 开方除之,即得也。

  淳风等按:依密率,以八十八乘之,为实。七乘囷高为法。实如法而一。开 方除之,即周也。〕

上一章 > 目录 < 下一章
推荐古籍
论语 三字经 三国演义 大学章句集注 西游记 红楼梦 水浒传 三国志 史记 三侠五义 三十六计 三命通会 三略 三遂平妖传 世说新语 东京梦华录 东周列国志 东游记 东观奏记 中庸 中论 中说 九州春秋 九章算术 书目答问 乾坤大略 了凡四训 二刻拍案惊奇 云笈七签 五代史阙文 五代新说 五灯会元 亢仓子 人物志 仪礼 传习录 伤寒论 伯牙琴 何典 何博士备论 佛国记 便宜十六策 僧伽吒经 僧宝传 儒林外史 儿女英雄传 元史 公孙龙子 公羊传 六祖坛经 六韬 兵法二十四篇 农桑辑要 冰鉴 列女传 列子 刘公案 刘子 初刻拍案惊奇 前汉演义 剪灯新话 北史 北史演义 北游记 北溪字义 北齐书 匡谬正俗 医学源流论 十七史百将传 十二楼 十六国春秋别传 千字文 千金方 华严经 华阳国志 南北史演义 南史 南史演义 南游记 南越笔记 南齐书 博物志 历代兵制 反经 古今谭概 古画品录 史通 司马法 后汉书 后汉演义 后西游记 吕氏春秋 吴子 吴船录 吴越春秋 周书 周易 周礼 呻吟语 唐传奇 唐才子传 唐摭言 商君书 商君书 喻世明言 四十二章经 四圣心源 园冶 困学纪闻 围炉夜话 国语 圆觉经 地藏经 增广贤文 墨子 声律启蒙 夜航船 大唐创业起居注 大唐新语 大唐西域记 大戴礼记 天工开物 天玉经 太平广记 太平御览 太玄经 太白阴经 夷坚志 奇经八脉考 奉天录 女仙外史 子夏易传 孔子家语 孙子兵法 孙膑兵法 孝经 孟子 孽海花 宋书 宋史 官场现形记 宣室志 容斋随笔 封神演义 将苑 尉缭子 小五义 小八义 小窗幽记 尔雅
版权所有©一直查   网站地图 闽ICP备20012346号-1